Broken Calculator
update Feb 11 2019, 21:53
On a broken calculator that has a number showing on its display, we can perform two operations:
Double: Multiply the number on the display by 2, or; Decrement: Subtract 1 from the number on the display. Initially, the calculator is displaying the number X.
Return the minimum number of operations needed to display the number Y.
Example 1:
Input: X = 2, Y = 3
Output: 2
Explanation: Use double operation and then decrement operation {2 -> 4 -> 3}.
Example 2:
Input: X = 5, Y = 8
Output: 2
Explanation: Use decrement and then double {5 -> 4 -> 8}.
Example 3:
Input: X = 3, Y = 10
Output: 3
Explanation: Use double, decrement and double {3 -> 6 -> 5 -> 10}.
Example 4:
Input: X = 1024, Y = 1
Output: 1023
Explanation: Use decrement operations 1023 times.
Note:
1 <= X <= 10^9
1 <= Y <= 10^9
Basic Idea:
如果X比Y大,我们就每次让X--
,这种情况下直接返回 X-Y
;
如果X比Y小,如果从X转换为Y的方向考虑,每次有两种选择,及 X=X*2
或者 X=X-1
,所以我们可能需要做一个BFS,但是这样的话时间空间复杂度将是指数级的。
但如果我们从Y出发,考虑它每次是如何被X推出,则只有一条路可以选,就会简单许多:
- 当Y为奇数时,一定是由
X * 2 - 1
形成; - 当Y为偶数时,一定是由
X * 2
形成; - 当Y小于X时,一定是
while (X>Y) X--;
形成;
于是我们就可以用这种方法反推来计算操作次数。这种思路非常巧妙,以后也要注意可以从反方向考虑问题。
Java Code:
class Solution {
public int brokenCalc(int X, int Y) {
if (X > Y) return X - Y;
int ret = 0;
while (Y > X) {
if (Y % 2 == 0) {
Y /= 2;
ret++;
} else {
Y = (Y + 1) / 2;
ret += 2;
}
}
return ret + X - Y;
}
}