Broken Calculator

update Feb 11 2019, 21:53

LeetCode

On a broken calculator that has a number showing on its display, we can perform two operations:

Double: Multiply the number on the display by 2, or; Decrement: Subtract 1 from the number on the display. Initially, the calculator is displaying the number X.

Return the minimum number of operations needed to display the number Y.

Example 1:

Input: X = 2, Y = 3
Output: 2
Explanation: Use double operation and then decrement operation {2 -> 4 -> 3}.

Example 2:

Input: X = 5, Y = 8
Output: 2
Explanation: Use decrement and then double {5 -> 4 -> 8}.

Example 3:

Input: X = 3, Y = 10
Output: 3
Explanation:  Use double, decrement and double {3 -> 6 -> 5 -> 10}.

Example 4:

Input: X = 1024, Y = 1
Output: 1023
Explanation: Use decrement operations 1023 times.

Note:

  1. 1 <= X <= 10^9
  2. 1 <= Y <= 10^9

Basic Idea:

如果X比Y大,我们就每次让X--,这种情况下直接返回 X-Y;

如果X比Y小,如果从X转换为Y的方向考虑,每次有两种选择,及 X=X*2 或者 X=X-1,所以我们可能需要做一个BFS,但是这样的话时间空间复杂度将是指数级的。

但如果我们从Y出发,考虑它每次是如何被X推出,则只有一条路可以选,就会简单许多:

  • 当Y为奇数时,一定是由 X * 2 - 1 形成;
  • 当Y为偶数时,一定是由 X * 2 形成;
  • 当Y小于X时,一定是 while (X>Y) X--; 形成;

于是我们就可以用这种方法反推来计算操作次数。这种思路非常巧妙,以后也要注意可以从反方向考虑问题

Java Code:

    class Solution {
        public int brokenCalc(int X, int Y) {
            if (X > Y) return X - Y;
            int ret = 0;
            while (Y > X) {
                if (Y % 2 == 0) {
                    Y /= 2;
                    ret++;
                } else {
                    Y = (Y + 1) / 2;
                    ret += 2;
                }
            }
            return ret + X - Y;
        }
    }

results matching ""

    No results matching ""