Subarray Sums Divisible by K
update Feb 15 2019, 15:30
Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by K.
Example 1:
Input: A = [4,5,0,-2,-3,1], K = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by K = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Note:
1 <= A.length <= 30000
-10000 <= A[i] <= 10000
2 <= K <= 10000
Basic Idea:
既然是subarray sum的问题,仍然要从前缀和的角度考虑。题目所求的是sum为k的倍数的subarray的个数,brute force是 O(N^2)
,所以我们的目标是 O(N)
时间。
我们发现对于当前preSum,如果有 currPreSum - prevPreSum == c * K
, 则之间的部分sum就是K的倍数。进一步,如果有 currPreSum % K == prevPreSum % K
, 这和前面的条件等价。
于是我们就有了一个解法,用一个长度为K的count数组记录之前出现的preSum % K
的值的个数。每次计算出新的preSum之后,count数组中对应相同余数出现过的个数就是到当前num结尾的符合条件subarray的个数。然后更新count数组,加一。
Java Code:
注意Java中mod会产生负数,需要特别处理。
class Solution {
public int subarraysDivByK(int[] A, int K) {
int[] count = new int[K];
count[0] = 1;
int preSum = 0, ret = 0;
for (int num : A) {
preSum += num;
int remainder = preSum % K;
if (remainder < 0) remainder += K;
ret += count[remainder];
count[remainder]++;
}
return ret;
}
}