Unique Paths III
update Feb 12 2019, 23:39
On a 2-dimensional grid, there are 4 types of squares:
1 represents the starting square. There is exactly one starting square.
2 represents the ending square. There is exactly one ending square.
0 represents empty squares we can walk over.
-1 represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
Basic Idea:
基本思路就是用DFS硬算,考虑所有从start出发到end结尾到路径,用一个matrix标记每个点是否被经过,统计经过所有点的路径个数。需要注意back tracking。
Java Code:
class Solution {
private int[] dr = new int[]{0, 1, -1, 0};
private int[] dc = new int[]{1, 0, 0, -1};
private int[][] grid;
private int R, C;
private int ret;
private int spaceNum = 0; // 起点和值为0的点的个数
public int uniquePathsIII(int[][] grid) {
this.grid = grid;
R = grid.length;
C = grid[0].length;
ret = 0;
int sr = 0, sc = 0;
for (int i = 0; i < R; ++i) {
for (int j = 0; j < C; ++j) {
if (grid[i][j] == 1) {
sr = i;
sc = j;
spaceNum++;
} else if (grid[i][j] == 0) {
spaceNum++;
}
}
}
dfs(sr, sc, 0);
return ret;
}
// 保证每次进入dfs的位置一定是valid的,进去之后再标记为visited
private void dfs(int r, int c, int visitedNum) {
if (grid[r][c] == 2) {
if (visitedNum == spaceNum) ret++;
// System.out.println(spaceNum + " " + visitedNum);
return;
}
grid[r][c] = -1;
for (int i = 0; i < 4; ++i) {
int new_r = r + dr[i];
int new_c = c + dc[i];
if (isValid(new_r, new_c)) {
dfs(new_r, new_c, visitedNum + 1);
}
}
grid[r][c] = 0;
}
private boolean isValid(int r, int c) {
return !(r < 0 || r >= R || c < 0 || c >= C || grid[r][c] == -1);
}
}